Summary about Face Recognition with OpenCV

Some ideas and approachments about Face Recognition

geometric feature

Eigenfaces

Fisherfaces

Local Binary Patterns Histograms (LBPH)

      Mat p = spatial_histogram(
                lbp_image, /* lbp_image */
                /* number of possible patterns */
                static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))),
                _grid_x, /* grid size x */
                _grid_y, /* grid size y */
                true)
  The parameters *gird_x* and *grid_y* control the grid size of the spatial histograms.
          At last the feature vectors (p here is the spatial histogram) are given .

  LBPH::predict(InputArray _src, int &minClass, double &minDist)

  compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR)

  Chi-square test is used for the distance measure

The Performance

Reference